US009277026B2

a2z United States Patent (10) Patent No.: US 9,277,026 B2

Liang et al. (45) Date of Patent: Mar. 1, 2016
(54) CACHE STICKINESS INDEX FOR CONTENT (56) References Cited
DELIVERY NETWORKING SYSTEMS
U.S. PATENT DOCUMENTS
(71) Applicant: Facebook, Inc., Menlo Park, CA (US)
8,204,878 B2* 6/2012 Amer-Yahiaetal. 707/723
(72) Inventors: XianllIl Liang San Jose. CA (US) 8,903,876 B2* 12/2014 Michael GOG6F 17/30221
’ b5 . . 707/824
Hongzhong Jia, Cupertino, CA (US); 2005/0204098 AL* 9/2005 Martin et al. .ococococee. 711/130
Jason Taylor, Berkeley, CA (US) 2007/0174660 Al* 7/2007 Peddada ..o 714/4
(73) Assignee: Facebook, Inc., Menlo Park, CA (US) * cited by examiner
(*) Notice: Subject. to any disclaimer,. the term of this Primary Examiner — Brian Peugh
patent is extended or adjusted under 35 . . .
U.S.C. 154(b) by 236 days (74) Attorney, Agent, or Firm — Perkins Coie LLP
(21) Appl. No.: 13/934,697 (57) ABSTRACT
(22) Filed: Jul. 3,2013 Various embodiments of the present disclosure relate to a
cache stickiness index for providing measurable metrics
(65) Prior Publication Data associated with caches of a content delivery networking sys-
US 2015/0012710 A1 Jan. 8. 2015 tem. In one embodiment, a method for generating a cache
T stickiness index, including a cluster stickiness index and a
(51) Int.CL region stickiness index, is disclosed. In embodiments, the
GO6F 12/00 (2006.01) cluster stickiness index is generated by comparing cache keys
HO4L 29/08 (2006.01) shared among a plurality of front-end clusters. In embodi-
(52) US.CL ments, the region stickiness index is generated by comparing
CPC ... HO4L 67/2842 (2013.01); HO4L 67/1006 cache keys shared among a plurality of data centers. In one
(2013.01); HO4L 6,7/306 (2013.01) embodiment, a system comprising means for generating a
(58) Field of Classification Search stickiness index is disclosed.

None
See application file for complete search history.

20 Claims, 8 Drawing Sheets

[400

Perform a sampling of a plurality of cache keys / 410

assoclated with a plurality of front-end clusters
within a regional data center

v

412
Determine a plurality of working sets assoclated r
with the plurality of front-end clusters

y

Compare the plurality of working sets

414

'

) 416
Compute a shared percentage for the plurality of /-
working sets

Compute a cluster stickiness index value

r 418

US 9,277,026 B2

Sheet 1 of 8

Mar. 1, 2016

U.S. Patent

Xapu|

\ ssaupong uolboy
1445

o

xapu|

\ sseuPIS Jaysn|D
A4 5

/

/

orl

I Ol

SINPON

ocl

ssauONg ayoe)

/

oLt H

0s1

wajsAg swabeuepy ssaooy

0cl \

jog Bupop

ayoen

ayoen

ayoen

(44" k

(44} .\ ccl k

US 9,277,026 B2

Sheet 2 of 8

Mar. 1, 2016

U.S. Patent

NOl¢

00¢ .\

¢ OIA

g01¢

A\ f4X4

v0le

U.S. Patent

Mar. 1, 2016 Sheet 3 of 8

US 9,277,026 B2

300

S

—~
312A

™~ 312B

~ 312N

FIG. 3

U.S. Patent Mar. 1, 2016 Sheet 4 of 8 US 9,277,026 B2

[400

Perform a sampling of a plurality of cache keys r 410
associated with a plurality of front-end clusters
within a regional data center

l

412
Determine a plurality of working sets associated f—
with the plurality of front-end clusters

414

Compare the plurality of working sets

) 416
Compute a shared percentage for the plurality of f—
working sets

|

418
Compute a cluster stickiness index value r

FIG. 4

U.S. Patent Mar. 1, 2016 Sheet 5 of 8

Perform a sampling of a plurality of cache keys r 510
associated with a plurality of data centers within a
global set

l

512
Determine a plurality of working sets associated r
with the plurality of data centers

514
Compare the plurality of working sets

) 516
Compute a shared percentage for the plurality of f—
working sets

l

518
Compute a region stickiness index value r

FIG. 5

US 9,277,026 B2

I 500

US 9,277,026 B2

Sheet 6 of 8

Mar. 1, 2016

U.S. Patent

LC uer,

9 DIA

yLUer, guer, £99Q, $g99Q, /1990, 01990, €990, 9ZAON,

6l AON,

CLAON, G AON,

- Ne&=
019 TN
A4\ / \/\l\ <J 4
144\ L — * . . .
970 * * .
3 . e ° - o ™
870 [— &] s r ., . -t e
S0) 44 * 029 7‘5 T . /- ° . -\ S~
s 7 N ¥ s 7
. . - J ° | . |

. o h P
Zso . . °* v 7% R L4 L)] o Jo o

. * i ® - [ad - o, o - - - - ° - - []
P60 ot -

\ !

950 i i

: L /
850 N 7

-y
d
Xapu| SS8UBOIS J9ISND X9pu| SSAUNONS JaISN|D X9pu| SSAUDIONS JAISNIO | =
Z 191sn|D AdaIsnD " ee ¥ 19180 = |

009 .\

¥ 0
o FAAY
124dY
9’0
8’0

G0
Z¢so
¥G'0
950
850

US 9,277,026 B2

Sheet 7 of 8

Mar. 1, 2016

U.S. Patent

L OId

00Z walsAg BuppomiaN |eroos

(7
210)S JUN02OY

[2IoUBUI

Vi

a10)g abp3

[jZ3
810)g JuBUOD

1745

W3LSAS INFJWIOVNYIN SSTOOV

~_—

0eZ L
al0l1g SlLL
aJyold Jasn 19MI9g abessapy

geL ogl
210)S UOOBUUO
1S uoh 0 6o LonoY
(s]%2
JoAISS g

[543
1ab6607 uonoy

g0z
JoaIsg

1s9nboy |dv

US 9,277,026 B2

Sheet 8 of 8

Mar. 1, 2016

U.S. Patent

008 .\

8 OIA

0es8 \

108$3201d Aowspy
0L8 k 0z8 k
109UU02IB|
aoInaQg 8aInag
: a%1Aa 1ndu soeI9)U
feidsig A8 1nduj v__o\ﬁmwz_

0<s8 k

cs8 |\

018 \\

US 9,277,026 B2

1
CACHE STICKINESS INDEX FOR CONTENT
DELIVERY NETWORKING SYSTEMS

FIELD OF INVENTION

The present disclosure relates generally to caching, and
more particularly to generating a cache stickiness index asso-
ciated with a content delivery networking system.

BACKGROUND

Social networking systems typically use a caching system
to support data requests from users. Caches store data
recently retrieved from a system database. Subsequent user
requests for the same data can then be routed to the caches for
quick retrieval. This quick turnaround lightens the load on the
system database and enhances user experience. For large
social networking systems that use multiple data centers, each
with multiple caches, to support data requests from millions
(or even billions) of users, it is beneficial to have efficient
traffic routing policies. Traffic routing policies control which
data centers and/or which caches are accessed to support data
requests submitted to a social networking system. Routing the
data request to a particular data center and/or a particular
cache in which the data is “hot” (i.e., same data has been
recently stored in the particular location) can have many
benefits. However, it is often difficult to design a measurable
goal for tuning traffic routing policy.

SUMMARY

The present disclosure contemplates methods, systems,
paradigms, and structures for generating cache stickiness
index to provide measurable metrics associated with caches
of content delivery networking systems. In one embodiment,
amethod is disclosed for generating a cache stickiness index,
such as a cluster stickiness index, a region stickiness index, or
both. In embodiments, a plurality of stickiness values is gen-
erated by comparing unique cache keys shared among a plu-
rality of working sets. In one embodiment, a system compris-
ing means for generating a stickiness index is disclosed.

Other aspects, elements, features, and steps in addition to,
or in place of, what is described above will be apparent from
the accompanying figures and detailed description.

BRIEF DESCRIPTION OF THE DRAWINGS

One or more embodiments of the present disclosure are
illustrated by way of example and not limitation in the figures
of'the accompanying drawings, in which like references indi-
cate similar elements. In the drawings:

FIG. 1 is a diagram illustrating an example networking
system in which one or more embodiments of the present
disclosure may be implemented;

FIGS. 2-3 are block diagrams of example working sets in
accordance with one or more embodiments of the present
disclosure;

FIG. 4 is a flow diagram of an example process for gener-
ating a cluster stickiness index in accordance with one or
more embodiments of the present disclosure;

FIG. 5 is a flow diagram of an example process for gener-
ating aregion stickiness index in accordance with one or more
embodiments of the present disclosure;

FIG. 6 is a graphical depiction of an example cluster sticki-
ness index in accordance with one or more embodiments of
the present disclosure;

10

30

40

45

55

2

FIG. 7 is a block diagram of an example system architec-
ture of a social networking system with which some embodi-
ments of the present disclosure may be utilized; and

FIG. 8 is a block diagram of an example architecture for a
system that may be utilized to implement the techniques
described herein.

One skilled in the art will readily recognize from the fol-
lowing discussion that alternative embodiments of the struc-
tures and methods illustrated herein may be employed with-
out departing from the principles of the disclosure described
herein.

DETAILED DESCRIPTION

Disclosed are methods, systems, paradigms, and structures
for generating a cache stickiness index to provide measurable
metrics for optimizing service of user requests in content
delivery networking systems. In any content delivery net-
working system, such as a social networking system, an
access management system is generally used to manage ser-
vice of user requests. The access management system may be
a module of networking devices, computing mechanisms,
storage, and application components that work together to
deliver networking services.

The access management system is utilized by a content
delivery networking system (or “networking system”) to
decide where a user request should be sent in order to fetch
data items associated with the request. The user request may
be, for example, a request for a photograph generated on a
platform system associated with the networking system. In
particular, the access management system follows a traffic
routing policy to decide which cache host of the networking
system is the appropriate receiver of the user request. Upon
receiving the user request, a selected cache host gathers data
(e.g., the photograph and related information) to service the
request, and sends that data back to the access management
system. For example, the cache host fetches the photograph
from a cache of the networking system. Subsequently, the
access management system transmits the data (including the
photograph) to the user.

Typically, a user request is distributed, or transmitted, by
the access management system across all cache hosts of the
networking system based on load balancing. When load bal-
ancing, the access management system may send a subse-
quent request for the same data item to another cache, where
the data item may notreside. As such, a cache miss may occur,
and the data item may have to be fetched from the database,
resulting in slow performance and reduced user experience.

The present disclosure contemplates a “stickiness” metric
that provides a measureable outcome for guiding routing
decisions of the access management system. For example, if
a stickiness value is available for a cache X, where the value
is indicative of how “sticky” a user request is to cache X, then
routing that request directly to cache X, where the data is
warm (i.e., recently accessed), will increase the likelihood of
resulting in a cache hit. Using the stickiness value as a metric,
a developer, for example, has a measurable goal on which to
improve routing policies for sending user requests to various
caches of the networking system.

Inorderto generate the stickiness metric, a technique of the
present disclosure contemplates generating a cache stickiness
index which contains a plurality of stickiness values associ-
ated with data storage systems, such as a “front-end cluster”
or a “region.” The plurality of stickiness values may be uti-
lized for analyzing operations of the networking system. In
some embodiments, the stickiness values may be organized
into two types of stickiness metrics, a cluster stickiness metric

US 9,277,026 B2

3

and a region stickiness metric. In embodiments, the cache
stickiness index comprises a cluster stickiness index, repre-
sentative of the cluster stickiness metric, and a regional sticki-
ness index, representative of the region stickiness metric. In
particular, the cluster stickiness index includes stickiness val-
ues computed for a plurality of data items shared among one
ormore “front-end clusters” within a “region” of the network-
ing system. The region stickiness index includes stickiness
values computed for a plurality of data items shared among
“regions” within a “global set” of the networking system. In
embodiments, the plurality of data items are distinctly difter-
ent from one another, as identified by cache keys of the
plurality of data items.

Certain implementations of the present disclosure provide
many benefits including, but are not limited to: (1) assisting
the development of efficient traffic routing policies of the
social networking system by providing measureable out-
comes (i.e., metrics in the form of cache stickiness index
values); (2) enabling the ability to monitor and measure disas-
ter discovery and recovery by having the metrics to set mea-
surable baselines; (3) optimizing data center utilization and
cache access by having the metrics to assist in deduplication
decisions; (3) reducing infrastructure cost by providing the
metrics to evaluate resource utilization; and (4) enhancing
user experience by providing the metrics to improve cache hit
ratios.

Before discussing further details of the techniques of the
present disclosure, it is useful to define certain terminology.
The term “cluster stickiness index” refers to an index com-
prising stickiness values associated with how “sticky” is a
particular front-end cluster. As will be discussed in further
details below, a front-end cluster is “sticky” if it contains data
items that are not duplicated, or shared, with other front-end
clusters in the same region. The term “front-end cluster,” as
used herein, refers to a cluster of devices that temporarily
stores information (or “data items”) which is served to front-
end user devices in response to the user requests. For
example, a cache can be implemented by a front-end cluster.
The term “region”, “regional data center”, or “data center”,
used interchangeably herein, refers to a plurality of net-
worked front-end clusters within a locality. For example, a
regional data center is associated with a continent (e.g., North
America), where the plurality of front-end clusters of that
regional data center are used to store data for servicing user
requests in that location (e.g., content accessed by user
devices in North America).

The term “region stickiness index™ as used herein refers to
an index comprising stickiness values associated with how
“sticky” is a particular region. As will be discussed in further
details below, a region is “sticky” if it contains data items that
are not duplicated, or shared, with other regional data centers
in the same global set. As used herein, the term “global set”
generally refers to a set containing all regions associated with
the networking system, where the regions within the global
set are managed by the access management system. The net-
working system, for example, may have a global setincluding
five regions, or data centers, for serving user requests distrib-
uted across five particular continents, with one region dedi-
cated for serving each continent.

An analysis of a working set of (i) a front-end cluster or (ii)
a region determines how “sticky” is the particular front-end
cluster or the particular region. The term “working set” as
used herein refers to a set of unique cached items within a
front-end cluster or a region. A working set may be associated
with a particular front-end cluster. For example, the working
set associated with a “photo cluster” is a working set com-
prising unique cached items related to photos stored in the

10

15

20

25

30

35

40

45

50

55

60

65

4

photo-only cache implemented by the photo cluster. A work-
ing set may also be associated with a particular region. For
example, a working set of a North America region, or data
center, comprises all unique cached items in a plurality of
front-end clusters of that region utilized for serving user
requests in North America. The unique cached items associ-
ated with the photo cluster in the example above may be
included in the working set of the North America region.

Various aspects and examples of the present disclosure will
now be described with reference to the accompanying draw-
ings, where like reference numerals refer to like elements
throughout. Indeed, the following description provides spe-
cific details for a thorough understanding and enabling
description of the examples. One skilled in the art will under-
stand, however, that the present disclosure may be practiced
without many of these details. Additionally, some well-
known structures or functions may not be shown or described
in detail, so as to avoid unnecessarily obscuring the relevant
description.

Without intent to further limit the scope of the disclosure,
examples of instruments, apparatus, methods and their
related results according to the embodiments of the present
disclosure are given below. Reference in this specification to
“one embodiment” or “an embodiment” means that a particu-
lar feature, structure, or characteristic described in connec-
tion with the embodiment is included in at least one embodi-
ment of the disclosure. The appearances of the phrase “in one
embodiment” in various places in the specification are not
necessarily all referring to the same embodiment, nor are
separate or alternative embodiments mutually exclusive of
other embodiments. Moreover, various features are described
which may be exhibited by some embodiments and not by
others. Similarly, various requirements are described which
may be requirements for some embodiments but not other
embodiments.

The terms used in this specification generally have their
ordinary meanings in the art, within the context of the disclo-
sure, and in the specific context where each term is used.
Certain terms that are used to describe the disclosure are
discussed below, or elsewhere in the specification, to provide
additional guidance to the practitioner regarding the descrip-
tion of the disclosure. The use of examples anywhere in this
specification including examples of any terms discussed
herein is illustrative only, and is not intended to further limit
the scope and meaning of the disclosure or of any exemplified
term. Likewise, the disclosure is not limited to various
embodiments given in this specification.

The terminology used in the description presented below is
intended to be interpreted in its broadest reasonable manner,
even though it is being used in conjunction with a detailed
description of certain specific examples of the invention. Cer-
tain terms may even be emphasized below; however, any
terminology intended to be interpreted in any restricted man-
ner will be overtly and specifically defined as such in this
Detailed Description section.

FIG. 1 depicts a block diagram of an example system
environment 100 in which the techniques described herein
may be implemented. Although not required, aspects of the
present disclosure may be described below in the general
context of computer-executable instructions, such as routines
executed by a general-purpose data processing device (e.g., a
server computer or a personal computer). Those skilled in the
relevant art will appreciate that the invention may be prac-
ticed with other communications, data processing, or com-
puter system configurations, including: wireless devices,
Internet appliances, hand-held devices (including personal
digital assistants (PDAs)), wearable computers, all manner of

US 9,277,026 B2

5

cellular or mobile phones, multi-processor systems, micro-
processor-based or programmable consumer electronics, set-
top boxes, network PCs, mini-computers, mainframe com-
puters, and the like. Indeed, the terms “computer,” “server,”
and the like are used interchangeably herein, and may refer to
any of the above devices and systems.

While aspects of the present disclosure, such as certain
functions, are described as being performed exclusively on a
single device, the invention may also be practiced in distrib-
uted environments where functions or modules are shared
among disparate processing devices. The disparate process-
ing devices are linked through a communications network,
such as a Local Area Network (LAN), Wide Area Network
(WAN), or the Internet. In a distributed computing environ-
ment, program modules may be located in both local and
remote memory storage devices.

Aspects of the invention may be stored or distributed on
tangible computer-readable media, which have stored
thereon instructions that may be used to program a computer
(or other electronic devices) to perform a process. The tan-
gible computer-readable media may include, but are not lim-
ited to, floppy diskettes, optical disks, compact disc read-only
memories (CD-ROMs), magneto-optical disks, read-only
memories (ROMs), random access memories (RAMs), eras-
able programmable read-only memories (EPROMs), electri-
cally erasable programmable read-only memories (EE-
PROMs), magnetic or optical cards, flash memory, or other
type of media or machine-readable medium suitable for stor-
ing electronic instructions. Alternatively, computer imple-
mented instructions, data structures, screen displays, and
other data related to the invention may be distributed over the
Internet or over other networks (including wireless net-
works), on a propagated signal on a propagation medium
(e.g., an electromagnetic wave(s), a sound wave, etc.) over a
period of time. In some implementations, the data may be
provided on any analog or digital network (packet switched,
circuit switched, or other scheme).

As illustrated in FIG. 1, the networking system 100
includes an access management system 120, a plurality of
cache devices 122, and a cache stickiness module 130 in
communication over a network 110. The plurality of cache
devices 122 may be implemented by one or more “front-end
clusters” or one or more “regional data centers” of a content
delivery networking system for storing data to service user
requests. In one example, a particular cache device 122 is
utilized by a front-end cluster to store (and serve) user
requests associated with photographs generated on a system
platform of the networking system. In another example, one
or more of the cache devices 120 are utilized by a regional
data center to serve user requests in the North America.

The access management system 120 manages access to the
plurality of cache devices 122 to service the user requests.
The cache stickiness module 130 is in communication with
the plurality of cache devices 122 for generating stickiness
values associated with cached items stored in the plurality of
cache devices 122. In some embodiments, the stickiness val-
ues may be utilized by the content delivery networking sys-
tem (or “networking system”) for guiding, for example, the
access management system 120.

The cache stickiness module 130 generates the stickiness
values by determining a working set 150 associated with the
plurality of cache devices 122. In some embodiments, the
working set 150 determined may contain a plurality of unique
cached items belonging in one or more cache devices imple-
mented by a front-end cluster (not shown) of the networking
system. In other embodiments, the working set 150 deter-
mined may contain a plurality of unique cached items belong-

10

15

20

25

30

35

40

45

50

55

60

65

6

ing in one or more cache devices implemented by a regional
data center (not shown) of the networking system. As will be
discussed in further detail below, the regional data center may
include a plurality of front-end clusters implementing the one
or more cache devices.

The cache stickiness module 130 may be any module of
computing machinery which includes computer readable pro-
gram instructions capable, when executed by a processor of a
computer system, of causing the computer system to carry out
the steps of generating the stickiness values. The cache sticki-
ness module 130 may include a memory (not shown), such as
RAM, disk drive, EEPROM drive, etc. Further, the cache
stickiness module 130 may be coupled to one or more pro-
cessors (not shown).

In some embodiments, the stickiness values generated by
the cache stickiness module 130 may be stored in a cache
stickiness index 140. In some embodiments, the cache sticki-
ness index 140 may include a cluster stickiness index 142 and
a region stickiness index 144 for storing different types of
stickiness values. In some embodiments, the cache stickiness
index 140 may include only stickiness values, without any
categorization into different types of stickiness values. In
some embodiments, the cluster stickiness index 142 and the
region stickiness index 144 may exist as two separate entities.
For example, the cluster stickiness index 142 is a cache sticki-
ness index storing only stickiness values associated with a
plurality of front-end clusters within a regional data center of
the networking system. In another example, the region sticki-
ness index 144 is a cache stickiness index storing only sticki-
ness values associated with a plurality of regional data centers
within a global set of the networking system.

The cache stickiness index 140, the cluster stickiness index
142, or the region stickiness index 144, individually, may be
stored at a local database and/or a remote database. The cache
stickiness index 140, the cluster stickiness index 142, or the
region stickiness index 144, individually, stores stickiness
values generated by the cache stickiness module 130. For
example, the cluster stickiness index 142 stores a stickiness
value for each front-end cluster within a region of the net-
working system. In another example, the region stickiness
index 144 stores a stickiness value for each region within a
global set of the networking system.

The network 110 is configured to interconnect various
computing devices, such as the cache stickiness module 130
to the plurality of caches 120. The network 110 may include
any number of wired and/or wireless networks, including the
Internet, intranets, local area networks (LANs), metropolitan
area networks (MANs), wide area networks (WANs), per-
sonal area networks (PANs), direct connections, and/or the
likes. Additional computing devices, such as routers, network
switches, hubs, modems, firewalls, gateways, Radio Network
Controllers (RNCs), proxy servers, access points, base sta-
tions, and/or the likes may be employed to facilitate network
communications. In addition, the various computing devices
may be interconnected with T1 connections, T3 connections,
OC3 connections, frame relay connections, Asynchronous
Transfer Mode (ATM) connections, microwave connections,
Ethernet connections, token-ring connections, Digital Sub-
scriber Line (DSL) connections, and/or the likes. Further, the
network 110 may utilize any wireless standard and/or proto-
col, including, but not limited to, Global System for Mobile
Communications (GSM), Time Division Multiple Access
(TDMA), Code Division Multiple Access (CDMA),
Orthogonal Frequency Division Multiple Access (OFDM),
General Packet Radio Service (GPRS), Enhanced Data GSM
Environment (EDGE), Advanced Mobile Phone System
(AMPS), Worldwide Interoperability for Microwave Access

US 9,277,026 B2

7

(WiMAX), Universal Mobile Telecommunications System
(UMTS), Evolution-Data Optimized (EVDO), Long Term
Evolution (LTE), Ultra Mobile Broadband (UMB), Voice
over Internet Protocol (VoIP), Unlicensed Mobile Access
(UMA), and/or the likes.

Having a region stickiness index is advantageous for many
reasons. In a networking system, user data are generally
stored in cache of a data center according to access locality.
This is so because, for example, friends of a user are mostly
located in the same geographic location. As such, cache effi-
ciency could be improved if the user and the friends are served
from one geographical data center, in which the same data
have already been cached. If multiple data centers are utilized
to serve the user and the friends, multiple copies of the same
data are created on the data centers as a result, causing sig-
nificant increase in infrastructure cost. Having the region
stickiness index, with stickiness values computed for a plu-
rality of data centers of the social networking system, is
beneficial to reduce the infrastructure cost. For example, the
social networking system, by looking at the stickiness value
of a particular data center, is able to recognize that particular
data center to be the optimal place to route all data requests
associated with North America.

Having a cluster stickiness index is also advantageous for
many reasons. By monitoring and evaluating stickiness val-
ues for aplurality of front-end clusters within a region, or data
center, the networking system is able to identify whether there
exists multiple copies of a certain data (i.e., duplicate data)
within the data center. Thus, having the stickiness values, a
better decision can be made as whether or not to perform
deduplication. Reduction of multiple copies of the same data
created on multiple front-end clusters can improve cache
efficiency of the data center. Further, in a scenario where the
duplicate data is “hot” data (i.e., data so frequently accessed),
where the number of requests is very big, the networking
system is able to intelligently determine whether it should
keep the duplicate data; service of data from multiple front-
end clusters can help balance the work load and avoid stress-
ing any particular cache host.

Working Sets

FIGS. 2 and 3 illustrate examples of working sets, accord-
ing to one or more embodiments of the present disclosure. In
FIG. 2, a graphical depiction of a plurality of working sets
212A-N associated with a plurality of front-end clusters
210A-N is shown. In embodiments, a working set 212 A asso-
ciated with a front-end cluster 210A is an aggregation of all
unique cached items of the front-end cluster 210A, regardless
of how many instances each data item is accessed, or stored,
in that front-end cluster. For example, the front-end cluster
210A may include a set of ten data items {item 1, item 1, item
1,item 2, item 3, item 3, item 3, item 3, item 3, item 3}, but the
working set 212A only includes the data items {item 1, item
2, item 3}. The plurality of working sets 212A-N are deter-
mined for the plurality of front-end clusters 210A-N based on
a sampling of cache keys of all data items of the plurality of
front-end clusters. A cache key is a unique identifier associ-
ated with a data item, where the identifier is generated using
one or more hashing algorithms. According to an embodi-
ment, a working set is determined for each front-end cluster
by determining how many unique cached items, based on
cache keys, are contained within each front-end cluster.

In FIG. 3, a graphical depiction of a plurality of working
sets 312A-N associated with a plurality of regions 310A-N is
shown. In embodiments, a working set 312A associated with
aregion 310A is an aggregation of all unique cached items of
a plurality of front-end clusters 320A-N within the region
310A. For example, the region 310A may include two front-

10

15

20

25

30

35

40

45

50

55

60

8

end clusters 320A, 3208, where the front-end cluster 320A
includes a set of three cached items {item 1, item 1, item 1}
and the front-end cluster 320B includes a set of two cached
items {item 1, item 2, item 2}. The working set 312A of the
region 310A, therefore, will only include two items {item 1,
item 2}, regardless of how many instances each data item
(i.e.,item 1 and item 2) is accessed, or stored, in the front-end
clusters 320A, 320B. The plurality of working sets 312A-N
are determined for the plurality of regions 310A-N based on
a sampling of cache keys of all data items of the plurality of
regions. According to an embodiment, a working set is deter-
mined for each region by determining how many unique
cache keys are contained in the one or more front-end clusters
within the region.

It is noted that the working set associated with a front-end
cluster and the working set associated with a region differ
based on their respective sizes. For example, for a “regional”
working set of a regional data center, the working set encom-
passes all unique cached items of the regional data center,
stored across a plurality of front-end clusters within that
regional data center. On the other hand, the working set of a
front-end cluster within a regional data center is limited to
those unique cached items stored within that front-end clus-
ter. As will be discussed further in detail below, the respective
sizes enable determination of different metrics (i.e., cluster
stickiness index and region stickiness index), providing dif-
ferent perspectives of the overall networking system.

Cache Stickiness Index

FIG. 4 illustrates an example process 400 for generating a
cluster stickiness index, according to an embodiment of the
present disclosure. In embodiments, the cache stickiness
module 130 of FIG. 1 may be utilized for executing the
process 400. As illustrated in FIG. 4, the process 400 starts at
step 410. At step 410, a sampling of a plurality of cache keys
associated with all cached items of a plurality of front-end
clusters within a regional data center is performed. As dis-
cussed above, a cache key is a system generated unique iden-
tifier assigned for each data item stored in a cache of a content
delivery system (e.g., networking system). The cache key is
generated using one or more hashing algorithms known in the
art. At step 410, by sampling only a portion of all available
cache keys, the cache stickiness module is able to analyze a
subset of all unique cached items within the plurality of
front-end clusters. Analyzing only the subset provides a rep-
resentative assessment, as the total number of cached items
may be too large. It is noted, however, one of ordinary skill in
the art will appreciate that the number of cache keys sampled
may be adjusted according to specific needs (e.g., to improve
accuracy).

At step 412, a plurality of working sets is determined for
the plurality of front-end clusters based on the sampled cache
keys. In embodiments, a working set is determined for each
front-end cluster of the plurality of front-end clusters within
the regional data center. The working set is determined by
identifying unique cached items contained in each particular
front-end cluster, where the unique cached items are identi-
fied by the cache keys associated with the items. As a result,
the working set determined includes a plurality of data items
that are representative of all unique cached items of the front-
end cluster. For example, the front-end cluster X includes the
cacheditems {item 1, item 1, item 2, item 2, item 3} while the
working set X determined for that cluster includes only the
unique cached items {item 1, item 2, item 3}.

In embodiments, the working set determined at step 412
may be limited by the cache keys sampled at step 410. In one
example, let cluster Y include cached items {item 2, item 2,
item 4, item 4, item 5} and cluster Z include cached items

US 9,277,026 B2

9

{item 1, item 1, item 2, item 2, item 3}. When only the cache
keys associated with item 1, item 2, and item 3 are sampled,
the working set Y determined will only include {item 2}
while the working set Z determined will include {item 1, item
2,item 3}. It is noted that while a smaller sampling may result
in a reduction of a working set, according to some embodi-
ments, such result does not necessarily affect the process 400
detrimentally. One of ordinary skill in the art will appreciate
that the number of cache keys sampled may be adjusted
according to specific needs associated with the analysis.

At step 414, the plurality of working sets determined are
compared for matching data items, or matching cache keys. In
particular, the cache keys, associated with the cached items of
each working set, are compared across the plurality of front-
end clusters for any duplication of the cache keys. For
example, by comparing working set’Y and working Z in the
example above, one data item (i.e., item 2) is determined to be
duplicate data. As will be discussed in further detail at steps
416-418, using such comparison, a cluster stickiness index
value can be determined for each front-end cluster of the
plurality of front-end clusters in the regional data center.

At step 416, a shared percentage for each of the plurality of
working sets is computed. The term “shared percentage,” as
used herein, refers to the percentage of a particular working
set that is shared, in terms of cache key(s), with one or more
working sets. The shared percentage provides an indication
whether there is duplication of data among the plurality of
front-end clusters within the regional data center.

At step 418, a cluster stickiness index value (i.e., a sticki-
ness value associated with a particular front-end cluster) is
computed for each of the plurality of front-end clusters. In
embodiments, the cluster stickiness index value is computed
based on the shared percentage. In particular, the cluster
stickiness index value depends on the number of cache keys
shared (or duplicated) between the plurality of working sets
associated with the plurality of front-end clusters. The higher
the shared percentage, the more duplicate data item(s) exist
between the plurality of front-end clusters. As such, a particu-
lar front-end cluster, having a high shared percentage (i.e., its
data items are shared with many front-end clusters), likely has
a lower stickiness value.

Steps 414-418 may be better understood with the help of
some simplified mathematical expressions. First, a general
overview of the steps 414-418 is provided by using two gen-
eral mathematical expressions representative of a cluster
stickiness index (i.e., “csi”) and a cluster duplication index
(i.e., “cdi”). The cluster duplication index includes values
indicative of the sharing of data items across working sets
associated with a plurality of front-end clusters within a
region. The cluster stickiness index includes values indicative
of how sticky is a particular front-end cluster within the
region. The cluster stickiness value associated with the plu-
rality of front-end clusters depends on a sharing of data items
among the clusters. As such, the cluster duplication index
helps determine the cluster stickiness index.

In discussing the general mathematical expressions, sev-
eral assumptions are made for the sake of simplicity: (1) the
working sets being analyzed are all equal in size; and (2) the
cache key is either shared by all working sets in the region or
it is not shared at all. Additionally, for the general mathemati-
cal expressions, let WS1, WS2, . .. WSn represent a plurality
of working sets associated with a plurality of n front-end
clusters within a regional data center. For example, let WS1
represent working set 1 associated with front-end cluster 1 in
a regional data center having three front-end clusters (i.e.,
n=3). In this example, WS1 includes unique cached items of
the front-end cluster 1. Let WS represent a working set

region

25

30

40

45

50

55

10

associated with the regional data center in which the plurality
of n front-end cluster belongs. For example, WS,__, , is the
working set including all unique cached items distributed
across the three front-end clusters of the regional data center.

Accordingly, the steps 414-418 may generally be under-
stood with the following general mathematical expressions:

cdi=(WS +WS,+ ... WS,)/WSregion

csi=WSregion/(WS +WS,+... WS,)

where cdi is the cluster duplication index and csi is the
cluster stickiness index, and

where n is the total number of front-end clusters within the
region.

With the equations above, consider a scenario when a
front-end cluster is 100% sticky. In such scenario, the value
for both csi and cdi equals to 1. This is so because, when a
front-end cluster is sticky, no cache key of that front-end
cluster is shared cross the other front-end clusters belonging
to the same region. As discussed above, it is assumed that a
cache key is either shared by all working sets in the region or
it is not shared at all. Since there is no sharing by one cluster,
no sharing exists at all for the rest of the clusters under this
analysis. As such, the unique cached item(s) of each working
set remain unique and are accordingly counted in the WSre-
gion. Assuch, WS, ., may be represented as a summation of
all working sets in the region, where WSregion contains the
unique cached items from all of the working sets. The sce-
nario can be understood with the following calculations:

WSregion=(WS +WS,+. .. +WS,,) when there is no
shared cache key,

such that:

cdi = (WS, + WS, + ... WS,)/WSregion
= (WS + WS +... WS, /(WS + WS, + ... WS,)

cdi=1
and such that:

csi = WSregion/ (WS| + WS, + ... WS,)
= (WS = WS +... WS/ (WS, + WS, +... WS,)

csi=1

where n is the total number of front-end clusters within the
region.

On the other hand, consider a scenario when a front-end
cluster is 0% sticky. In such scenario, the cache key is dupli-
cated, or shared across all of the front-end clusters within the
region. Using the same general mathematical expressions, the
values for csi and cdi now diftfer. When there is duplication, or
sharing, the unique cached item(s) of every working set are
the same as those of the remaining working sets. The follow-
ing results:

WSregion=WS =WS,=... WS, when there is shared
cache key (i.e., duplication),
Such that:
csi=1/n
cdi=n
Where n is the total number of front-end clusters within the
region.

US 9,277,026 B2

11

A more involved discussion of calculating the csi is pos-
sible by further analyzing the duplication of data items, or
shared percentage associated with each working set. The
higher the shared percentage, the more duplicate data item(s)
exist between the plurality of working sets. Further, the higher
the percentage, the less “sticky” is the front-end cluster stor-
ing that particular data item (having the unique cache key).

For the sake of simplicity, certain assumptions are made in
the following discussion. First, the working sets in the dis-
cussion are all equal in size. For example, working set 1
associated with front-end cluster 1 has two unique cache keys,
and working set 2 associated with front-end cluster 2 also has
two unique cache keys. Second, a cache key is either (i)
shared across all front-end clusters or (i) not shared at all with
any other front-end clusters (i.e. no duplication). Third, the
value of the shared percentage is within the range [0-1], with
“0” indicative of 0% sharing and “1” indicative of 100%
sharing.

Let s represent the shared percentage. The shared percent-
age for three front-end clusters, for example, may be repre-
sented by the following diagram:

5

10

15

20

12

within the region. In this scenario, when a particular front-end
cluster is less sticky, a user request for the data item, for
example, is not likely to “stick” to that front-end cluster
because another front-end cluster can readily serve that same
data item. In such scenario, cache efficiency, for example,
may be at its worst due to data duplication. However, disaster
recovery, for example, may be at its best, as the data item may
be readily available even if the particular front-end cluster is
inaccessible.

A further analysis of the csi may be performed by looking
at the change in shared percentage. Consider the derivative of
the cs, function.

Desi=((1-n)/n)Ds
Where:

Ds=(n/(1-n))Dcsi

As can be seen above, the change in shared percentage is
n/(n-1) of the change in the cluster stickiness index value,
where the shared percentage change is in the opposite direc-

Clusterl All Clusters Clusters3

"Not Shared” Percent =1 - s | "All Shared"” Percent =s

"Not Shared" Percent =1 - s

Cluster2

"Not Shared" Percent=1-s

As can be seen from the above diagram, the csi calculation
may be represented by the following simplified mathematical
expressions:

WS =n*(1-8)+s=n+(1-n)s

region

where WS, =WS,=...=WS§, =1

and, as discussed above, where csi=WS
WS,+ ... +WS)

/(WS +

region

csi=(n+(l-n)s)/(L+1+...+1)

=n+{1-ms)/n

=1+({(1-m)/n)s

As aresult:

csi=1+((1-n)/n)s

where n is the total number of front-end clusters within the
region.

where when:

s=0, csi=1—best cluster stickiness index value

s=1, csi=1/n—=worst cluster stickiness index value

As can be seen above, when the shared percentage is O (i.e.,
no duplication of data among the front-end clusters), the csi
value is 1. When csi=1, the best stickiness value possible
occurs, indicating that a particular front-end cluster is highly
sticky. When a front-end cluster is sticky, a particular data
item requested is likely present in that cluster. A request
routed to that cluster will likely result, for example, in a cache
hit. Consider the other scenario, where the shared percentage
is 1, the csi value is 1/n (e.g., 1/3 for three front-end clusters).
When csi=1/n, the worst stickiness value possible occurs,
indicating data duplication across all front-end clusters

35

40

45

50

55

60

65

tion of the csi change. For example, assuming three front-end
clusters within the region, where n=3, the change in shared
percentage is 3/2 times the change in the csi value.

FIG. 5 illustrates an example process 500 for generating a
region stickiness index, according to an embodiment of the
present disclosure. In embodiments, the cache stickiness
module 130 of FIG. 1 may be utilized for executing the
process 500. As discussed above, the region stickiness index
is an index of stickiness values associated with a particular
regional data center, as opposed to a particular front-end
cluster. Referring to FIG. 5, the process 500 starts at step 510.
At step 510, a sampling of a plurality of cache keys associated
with all cached items of a plurality of regional data centers
within a global set is performed. As discussed above, a cache
key is a system generated unique identifier assigned for each
data item stored in a cache of a content delivery system (e.g.,
networking system). The cache key is generated using one or
more hashing algorithms known in the art. At step 510, by
sampling only a portion of all available cache keys, the cache
stickiness module is able to analyze a subset of all unique
cached items within the plurality of regional data centers.
Analyzing only the subset provides a representative assess-
ment, as the total number of cached items may be too large. It
is noted, however, one of ordinary skill in the art will appre-
ciate that the number of cache keys sampled may be adjusted
according to specific needs (e.g., to improve accuracy).

At step 512 a plurality of working sets is determined for the
plurality of regional data centers based on the sampled cache
keys. In embodiments, a working set is determined for each
regional data center of the plurality of regional data centers
within the global set. The working set is determined by iden-
tifying unique cached items contained in each particular
regional data center, where the unique cached items are iden-
tified by the cache keys associated with the items. As a result,
the working set determined includes a plurality of data items

US 9,277,026 B2

13

that are representative of all unique cached items of the
regional data center. For example, the regional data center X
includes the cached items {item 1, item 1, item 2, item 2, item
3} while the working set X determined for that regional data
center includes only the unique cached items {item 1, item 2,
item 3}.

In embodiments, the working set determined at step 512
may be limited by the cache keys sampled at step 510. In one
example, let regional data center Y include three front-end
clusters, where the cached items of those clusters include the
items {item 2, item 2, item 4, item 4, item 5}, and let regional
data center Z include three front-end clusters, where the
cached items of those clusters include the items {item 1, item
1, item 2, item 2, item 3}. When only the cache keys associ-
ated with item 1, item 2, and item 3 are sampled, the working
set’Y determined will only include {item 2} while the work-
ing set Z determined will include {item 1, item 2, item 3}. It
is noted that while a smaller sampling may result in a reduc-
tion of a working set, according to some embodiments, such
result does not necessarily affect the process 500 detrimen-
tally. One of ordinary skill in the art will appreciate that the
number of cache keys sampled may be adjusted according to
specific needs associated with the analysis.

At step 514, the plurality of working sets determined are
compared for matching data items, or matching cache keys. In
particular, the cache keys, associated with the cached items of
each working set, are compared across the plurality of
regional data centers for any duplication of the cache keys.
For example, by comparing working set Y and working Z in
the example above, one data item (i.e., item 2) is determined
to be duplicate data. As will be discussed in further detail at
steps 516-418, using such comparison, a region stickiness
index value can be determined for each regional data center of
the plurality of regional data centers in the global set.

At step 516, a shared percentage for each of the plurality of
working sets is computed. The term “shared percentage,” as
used herein, refers to the percentage of a particular working
set that is shared, in terms of cache key(s), with one or more
working sets. The shared percentage provides an indication
whether there is duplication of data among the plurality of
regional data centers within the global set.

At step 518, a region stickiness index value (i.e., a sticki-
ness value associated with a particular regional data center) is
computed for each of the plurality of regional data centers. In
embodiments, the region stickiness index value is computed
based on the shared percentage. In particular, the region
stickiness index value depends on the number of cache keys
shared (or duplicated) between the plurality of working sets
associated with the plurality of regional data centers. The
higher the shared percentage, the more duplicate data item(s)
exist between the plurality of regional data centers. As such,
a particular regional data center, having a high shared per-
centage (i.e., its data items are shared with many front-end
clusters), likely has a lower stickiness value.

Steps 514-518 may be better understood with the help of
some simplified mathematical expressions. First, a general
overview of the steps 514-518 is provided by using two gen-
eral mathematical expressions representative of a region
stickiness index (i.e., “rsi””) and a region duplication index
(i.e., “rdi”). The region duplication index includes values
indicative of the sharing of data items across working sets
associated with a plurality of regional data centers within a
global set. The region stickiness index includes values indica-
tive of how sticky is a particular regional data center within
the global set. The region stickiness value associated with the
plurality of regional data centers depends on a sharing of data

10

15

20

25

30

35

40

45

50

55

60

65

14

items among the data centers. As such, the region duplication
index helps determine the region stickiness index.

In discussing the general mathematical expressions, sev-
eral assumptions are made for the sake of simplicity: (1) the
working sets being analyzed are all equal in size; and (2) the
cache key is either shared by all working sets in the global set
or it is not shared at all. Further, for the general mathematical
expressions, let WS1, WS2, . .. WSn represent a plurality of
working sets associated with a plurality of n regional data
centers within a global set associated with a networking sys-
tem. For example, let WS1 represent working set 1 associated
with regional data center 1 in a global set having three
regional data centers (i.e., n=3). In this example, WSI1
includes unique cached items of the regional data center 1. Let
WSglobal represent a working set associated with the global
set of the networking system. For example, WSglobal is the
working set including all unique cached items distributed
across the three regional data centers of the global set utilized
by the networking system to service user requests.

Accordingly, the steps 514-518 may generally be under-
stood with the following general mathematical expressions:

1dir(WS A WSt ... WS, /WS,

ISIEWS 10 (WS 4+ WS ... WS,)

where rdi is the region duplication index and rsi is the
region stickiness index, and

where n is the total number of regions within the global set.

With the equations above, consider a scenario when a
regional data center is 100% sticky. In such scenario, the
value for both rsi and rdi equals to 1. This is so because, when
a regional data center is sticky, no cache key of that regional
data center is shared cross the other regional data centers
belonging to the same global set. As discussed above, it is
assumed that a cache key is either shared by all working sets
in the global set or it is not shared at all. Since there is no
sharing by one regional data center, no sharing exists at all for
the rest of the regional data centers under this analysis. As
such, the unique cached item(s) of each working set remain
unique and are accordingly counted in the W Sglobal. As such,
WSglobal may be represented as a summation of all working
sets in the global set, where WSglobal contains the unique
cached items from all of the working sets. The scenario can be
understood with the following calculations:

WSeopai= (WS +WSo+ . . . +WS,) when there is no
shared cache key,

such that:

rdi = (WSl + WS +... WSn)/WSglobal
= (WS + WSy +... WS,) /(WS + WSy +... WS,)

rdi=1

and such that:

rsi = WSgiopat | (WS) + WS +... WS,)
= (WS| + WSy + ... WS,) /(WS + WSy + ... WS,)

rsi=1

where n is the total number of regions within the global set.
On the other hand, consider a scenario when a regional data
center is 0% sticky. In such scenario, the cache key is dupli-
cated, or shared across all of the regional data centers within

US 9,277,026 B2

15

the global set. Using the same general mathematical expres-
sions above, the values for rsi and rdi now differ. When there
is duplication, or sharing, the unique cached item(s) of every
working set associated with every regional data center are the
same as those of the remaining working sets. The following
results:

WSeiopar=WS=WS = .. WS, when there is shared
cache key (i.e., duplication),
Such that:
rsi=1/n
rdi=n

where n is the total number of regions within the global set.

A more involved discussion of calculating the rsi is pos-
sible by further analyzing the duplication of data items, or
shared percentage associated with each working set. The
higher the shared percentage, the more duplicate data item(s)
exist between the plurality of working sets. Further, the higher
the percentage, the less “sticky” is the regional data center
storing that particular data item (having the unique cache
key).

To simplify the discussion, three assumptions, similar to
those in the cluster stickiness index discussion, are made: (1)
the working set sizes are all equal for all regional data centers;
(2) sharing of a cache key is either 100% shared across all
regions or 0% shared with any region (i.e. no duplication at
all); (3) and the value of the shared percentage in the discus-
sion is within the range [0-1], with “0” indicative of 0%
sharing and “1” indicative of 100% sharing.

Let s represent the shared percentage. The shared percent-
age for three regions, for example, may be represented by the
following diagram:

10

15

20

25

30

16

data center is highly sticky. When a particular regional data
center is sticky, a particular data item requested is likely
present in that regional data center. A request routed to that
regional data center will likely result, for example, in a cache
hit. Consider the other scenario, when the shared percentage
is 1, the rsi value is 1/n (e.g., 1/3 for three regional data
centers). When rsi=1/n, the worst stickiness value possible
occurs, indicating data duplication across all regional data
centers within the global set. In this scenario, when a particu-
lar regional data center is less sticky, a user request for the data
item, for example, is not likely to “stick™ to that regional data
center because another regional data center can readily serve
that same data item. In such scenario, data center utilization,
for example, may be at its worst due to data duplication.
However, disaster recovery, for example, may be at its best, as
the data item may be readily available at another regional data
center even if the particular regional data center is inacces-
sible.

A further analysis of the rsi may be performed by looking
at the change in shared percentage. Consider the derivative of
the rsi function.

Drsi=((1-n)/n)Ds
Where:

Ds=(n/(1-n))Drsi

As can be seen above, the change in shared percentage is
n/(n-1) of the change in the region stickiness index value,
where the shared percentage change is in the opposite direc-
tion of the rsi change. For example, assuming three regions
within the global set, where n=3, the change in shared per-

Regionl All Regions Region3

"Not Shared” Percent =1 - s | "All Shared"” Percent =s

"Not Shared" Percent =1 - s

Region2

"Not Shared" Percent=1-s

As can be seen from the above diagram, the rsi calculation
may be represented by the following simplified mathematical
expressions:

WS gropar=3* (1=s)}+s=3-2s

where WS, =WS,=... WS =1
and, as discussed above, where rsi=WS
WS,+...WS)

/(WS +

global

rsi=(B-29)/(1+1+1)

=1-25/3

As aresult:

rsi=1-2s/3

Where when:

s=0, rsi=1—=best region stickiness index value

s=1, rsi=1/n—worst region stickiness index value

As can be seen above, in a scenario when the shared per-
centage is 0 (i.e., no duplication of data among the regional
data centers), the rsi valueis 1. When rsi=1, the best stickiness
value possible occurs, indicating that a particular regional

45

50

55

60

65

centage is 3/2 times (or, 1.5x) the change in the rsi value. In
other words, a small change of rsi value corresponds to a
much higher reverse change for the s value.

FIG. 6 is a graphical depiction of an example trending chart
600 of a cluster stickiness index in accordance with one or
more embodiments of the present disclosure. Referring to
FIG. 6, sample stickiness values associated with a cluster
stickiness index are mapped over a span of time in the trend-
ing chart 600. The cluster stickiness index contains stickiness
values for each of the three front-end clusters (i.e., Cluster X,
Cluster Y, Cluster 7), where the values are computed from
November Sthto January 21. The trending chart 600 may help
a developer, for example, in making a more intelligent deci-
sion on configuring access management operations. For
example, by looking at a first point 610, the developer can see
a significant stickiness value drop accompanied by a subse-
quent rapid increase on December 10th for Cluster Y. The
value drop/rapid increase may provide a validation, for
example, of some event that happened to Cluster Y on Decem-
ber 10th. In another example, assume Cluster Y was inacces-
sible (e.g., shut down) on January 8th, the developer can
observe such change by looking at a second point 620, where
the stickiness value increased. The increased stickiness value
can be understood by the developer, as having one less front-

US 9,277,026 B2

17

end cluster would mean one less place to store a data item,
resulting in a lower amount of duplicate data and of shared
percentage. On the other hand, assume Cluster Y became
accessible again by the end of January, the developer can
observe such change by looking at a third point 622. The
decrease in stickiness value, as shown at the third point 622,
can make sense to the developer because the availability of
Cluster Y would result in an additional place to store a data
item, resulting in duplicate data and a higher shared percent-
age associated with the item stored/accessed between the
front-end clusters.

Other decisions may also be better informed by looking at
the trending chart 600. These decisions may carried out dif-
ferently according to different needs of the networking sys-
tem. For example, seeing that a certain front-end cluster is
highly sticky (e.g., high cluster stickiness value), a traffic
routing policy may be configured to route the same user
request (i.e., user request for data already existing in the
front-end cluster) to that front-end cluster every time, so as to
improve cache hit ratio. Alternately, the same user request
may be routed, for example, to a completely different front-
end cluster in a completely different data center. Such routing
decision may be carried out to help increase disaster recovery
flexibility, despite reducing the stickiness value for (i) the
front-end cluster and (ii) the data center in which the front-
end cluster belongs.

Social Networking System Architecture

As mentioned above, embodiments of the present disclo-
sure may be utilized within a social networking system. Typi-
cally, a social networking system includes one or more com-
puting devices storing user profiles associated with users
and/or other objects as well as connections between users and
other users and/or objects. In use, users join the social net-
working system and then add connections to other users or
objects of the social networking system to which they desire
to be connected. The users may be individuals or entities such
as businesses, organizations, universities, manufacturers. The
social networking system allows its users to interact with each
other as well as with other objects maintained by the social
networking system. In some embodiments, the social net-
working system allows users to interact with third-party web-
sites and financial account providers.

Based on stored data about users, objects and connections
between users and/or objects, the social networking system
can generate and maintain a “social graph” comprising a
plurality of nodes interconnected by a plurality of edges. Each
node in the social graph represents an object or user that can
act on another node and/or that can be acted on by another
node. An edge between two nodes in the social graph repre-
sents a particular kind of connection between the two nodes,
which may result from an action that was performed by one of
the nodes on the other node. For example, when a user iden-
tifies an additional user as a friend, an edge in the social graph
is generated connecting a node representing the first user and
an additional node representing the additional user. The gen-
erated edge has a connection type indicating that the users are
friends. As various nodes interact with each other, the social
networking system can modify edges connecting the various
nodes to reflect the interactions.

FIG. 7 is a block diagram of an example system architec-
ture of a social networking system 700 with which some
embodiments of the present disclosure may be utilized. In
some embodiments, the social networking system 700 may
utilize the cache stickiness module 130 of FIG. 1 for gener-
ating stickiness values. In one embodiment, the social net-
working system 700 may route user requests for accessing a
data item from the plurality of caches 120 based on the sticki-

10

15

20

25

30

35

40

45

50

55

60

65

18

ness values generated. For example, the social networking
system, via its access management system, may choose to
route a user request to a “highly sticky” front-end cluster or a
“highly sticky” regional data center where the data item is
“hot” to improve cache hit ratios. In another embodiment, the
social networking system 700 may perform deduplication on
the plurality of caches based on the stickiness values gener-
ated. For example, the social networking system may decide
to perform deduplication on a front-end cluster with a very
low stickiness value, indicating data items of that cluster are
shared with many other front-end clusters.

The social networking system 700 illustrated by FIG. 7
includes API request server 705, web server 710, message
server 715, user profile store 720, action logger 725, action
log 730, connection store 735, content store 740, edge store
745, and financial account store 750. Information in the user
profile store 720, content store 740, connection store 735,
edge store 745, financial account store 750, and/or action log
730 may be stored in the plurality of caches 122. Data stored
in the plurality of caches may be accessed, analyzed, and/or
processed by the cache stickiness module 130. In other
embodiments, the social networking system 700 may include
additional, fewer, or different modules for various applica-
tions. Conventional components such as network interfaces,
security mechanisms, load balancers, failover servers, man-
agement and network operations consoles, and the like are not
shown so as to not obscure the details of the system architec-
ture.

The API request server 705 allows other systems, user
devices, or tools to access information from the social net-
working system 700 by calling APIs. The information pro-
vided by the social network may include user profile infor-
mation or the connection information of users as determined
by their individual privacy settings. For example, a system,
user device, or tools interested in accessing data connections
within a social networking system may send an API request to
the social networking system 700 via a network. The API
request is received at the social networking system 700 by the
APl request server 705. The API request server 705 processes
the request by submitting the access request to an access
management system 120 where access is determined and any
data communicated back to the requesting system, user
device, or tools via a network.

The web server 710 links the social networking system 700
via a network to one or more client devices; the web server
serves web pages, as well as other web-related content, such
as Java, Flash, XML, and so forth. The web server 710 may
communicate with the message server 715 that provides the
functionality of receiving and routing messages between the
social networking system 700 and the client devices. The
messages processed by the message server 715 can be instant
messages, queued messages (e.g., email), text and SMS (short
message service) messages, or any other suitable messaging
technique. In some embodiments, a message sent by a user to
another can be viewed by other users of the social networking
system 700, for example, by the connections of the user
receiving the message. An example of a type of message that
can be viewed by other users of the social networking system
besides the recipient of the message is a wall post. In some
embodiments, a user can send a private message to another
user that can only be retrieved by the other user.

Each user of the social networking system 700 is associated
with a user profile, which is stored in the user profile store
720. A user profile includes declarative information about the
user that was explicitly shared by the user, and may also
include profile information inferred by the social networking
system 700. In one embodiment, a user profile includes mul-

US 9,277,026 B2

19

tiple data fields, each data field describing one or more
attributes of the corresponding user of the social networking
system 700. The user profile information stored in the user
profile store 720 describes the users of the social networking
system 700, including biographic, demographic, and other
types of descriptive information, such as work experience,
educational history, gender, hobbies or preferences, location
and the like. A user profile may also store other information
provided by the user, for example, images or videos. In cer-
tain embodiments, images of users may be tagged with iden-
tification information of users of the social networking sys-
tem 700 displayed in an image. A user profile in the user
profile store 720 may also maintain references to actions by
the corresponding user performed on content items in the
content store 740 and stored in the edge store 745.

A user profile may be associated with one or more financial
accounts, allowing the user profile to include data retrieved
from or derived from a financial account. A user may specify
one or more privacy settings, which are stored in the user
profile, that limit information from a financial account that the
social networking system 700 is permitted to access. For
example, a privacy setting limits the social networking sys-
tem 700 to accessing the transaction history of the financial
account and not the current account balance. As another
example, a privacy setting limits the social networking sys-
tem 700 to a subset of the transaction history of the financial
account, allowing the social networking system 700 to access
transactions within a specified time range, transactions
involving less than a threshold transaction amounts, transac-
tions associated with specified vendor identifiers, transac-
tions associated with vendor identifiers other than specified
vendor identifiers or any suitable criteria limiting information
from a financial account identified by a user that is accessible
by the social networking system 700. In one embodiment,
information from the financial account is stored in the user
profile store 720. In other embodiments, it may be stored in
the financial account store 750.

The action logger 725 receives communications about user
actions on and/or off the social networking system 700, popu-
lating the action log 730 with information about user actions.
Such actions may include, for example, adding a connection
to another user, sending a message to another user, uploading
an image, reading a message from another user, viewing
content associated with another user, attending an event
posted by another user, among others. In some embodiments,
the action logger 725 receives, subject to one or more privacy
settings, transaction information from a financial account
associated with a user and identifies user actions from the
transaction information. For example, the action logger 725
retrieves vendor identifiers from the financial account’s trans-
action history and identifies an object, such as a page, in the
social networking system 700 associated with the vendor
identifier. This allows the action logger 725 to identify a
user’s purchases of products or services that are associated
with a page, or another object, in the content store 740. In
addition, a number of actions described in connection with
other objects are directed at particular users, so these actions
are associated with those users as well. These actions are
stored in the action log 730.

The action log 730 may be used by the social networking
system 700 to track user actions on the social networking
system 700, as well as external website that communicate
information to the social networking system 700. Users may
interact with various objects on the social networking system
700, including commenting on posts, sharing links, and
checking-in to physical locations via a mobile device, access-
ing content items in a sequence or other interactions. Infor-

10

15

20

25

30

35

40

45

50

55

60

65

20

mation describing these actions is stored in the action log 730.
Additional examples of interactions with objects on the social
networking system 700 included in the action log 730 include
commenting on a photo album, communications between
users, becoming a fan of a musician, adding an event to a
calendar, joining a groups, becoming a fan of a brand page,
creating an event, authorizing an application, using an appli-
cation and engaging in a transaction. Additionally, the action
log 730 records a user’s interactions with advertisements on
the social networking system 700, as well as other applica-
tions operating on social networking system 700. In some
embodiments, data from the action log 730 is used to infer
interests or preferences of the user, augmenting the interests
included in the user profile and allowing a more complete
understanding of user preferences.

The action log 730 may also store user actions taken on
external websites and/or determined from a financial account
associated with the user. For example, an e-commerce web-
site that primarily sells sporting equipment at bargain prices
may recognize a user of the social networking system 700
through social plug-ins that enable the e-commerce website
to identify the user of the social networking system 700.
Because users of the social networking system 700 are
uniquely identifiable, e-commerce websites, such as this
sporting equipment retailer, may use the information about
these users as they visit their websites. The action log 730
records data about these users, including webpage viewing
histories, advertisements that were engaged, purchases made,
and other patterns from shopping and buying. Actions iden-
tified by the action logger 725 from the transaction history of
a financial account associated with the user allow the action
log 730 to record further information about additional types
of user actions.

The content store 740 stores content items associated with
a user profile, such as images, videos or audio files. Content
items from the content store 740 may be displayed when a
user profile is viewed or when other content associated with
the user profile is viewed. For example, displayed content
items may show images or video associated with a user profile
or show text describing a user’s status. Additionally, other
content items may facilitate user engagement by encouraging
a user to expand his connections to other users, to invite new
users to the system or to increase interaction with the social
network system by displaying content related to users,
objects, activities, or functionalities of the social networking
system 700. Examples of social networking content items
include suggested connections or suggestions to perform
other actions, media provided to, or maintained by, the social
networking system 700 (e.g., pictures or videos), status mes-
sages or links posted by users to the social networking sys-
tem, events, groups, pages (e.g., representing an organization
or commercial entity), and any other content provided by, or
accessible via, the social networking system.

The content store 740 also includes one or more pages
associated with entities having user profiles in the user profile
store 720. An entity is a non-individual user of the social
networking system 700, such as a business, a vendor, an
organization or a university. A page includes content associ-
ated with an entity and instructions for presenting the content
to a social networking system user. For example, a page
identifies content associated with the entity’s user profile as
well as information describing how to present the content to
users viewing the brand page. Vendors may be associated
with pages in the content store 740, allowing social network-
ing system users to more easily interact with the vendor via
the social networking system 700. A vendor identifier is asso-
ciated with a vendor’s page, allowing the social networking

US 9,277,026 B2

21

system 700 to identity the vendor and/or to retrieve additional
information about the vendor from the user profile store 720,
the action log 730, or from any other suitable source using the
vendor identifier. In some embodiments, the content store 740
may also store one or more targeting criteria associated with
stored objects and identifying one or more characteristics of a
user to which the object is eligible to be presented.

In one embodiment, the edge store 745 stores the informa-
tion describing connections between users and other objects
on the social networking system 700 in edge objects. Some
edges may be defined by users, allowing users to specify their
relationships with other users. For example, users may gen-
erate edges with other users that parallel the users’ real-life
relationships, such as friends, co-workers, partners, and so
forth. Other edges are generated when users interact with
objects in the social networking system 700, such as express-
ing interest in a page on the social networking system, sharing
a link with other users of the social networking system, and
commenting on posts made by other users of the social net-
working system. The edge store 745 stores edge objects that
include information about the edge, such as affinity scores for
objects, interests, and other users. Affinity scores may be
computed by the social networking system 700 over time to
approximate a user’s affinity for an object, interest, and other
users in the social networking system 700 based on the
actions performed by the user. Multiple interactions between
a user and a specific object may be stored in one edge object
in the edge store 745, in one embodiment. In some embodi-
ments, connections between users may be stored in user pro-
file store 720, or the user profile store 720 may access the edge
store 745 to determine connections between users.

FIG. 8 is a block diagram of an example architecture for a
system 800 that may be utilized to implement the techniques
described herein. The system 800 may reside, for example, in
the cache stickiness module. In FIG. 8, the system 800
includes one or more processors 810 and memory 820 con-
nected via an interconnect 830. The interconnect 830 is an
abstraction that represents any one or more separate physical
buses, point to point connections, or both connected by appro-
priate bridges, adapters, or controllers. The interconnect 830,
therefore, may include, for example, a system bus, a Periph-
eral Component Interconnect (PCI) bus, a HyperTransport or
industry standard architecture (ISA) bus, a small computer
system interface (SCSI) bus, a universal serial bus (USB), IIC
(I2C) bus, or an Institute of Electrical and Electronics Engi-
neers (IEEE) standard 694 bus, sometimes referred to as
“Firewire”

The processor(s) 810 may include central processing units
(CPUs) that can execute software or firmware stored in
memory 820. The processor(s) 810 may be, or may include,
one or more programmable general-purpose or special-pur-
pose microprocessors, digital signal processors (DSPs), pro-
grammable, application specific integrated circuits (ASICs),
programmable logic devices (PLDs), or the like, or a combi-
nation of such devices.

The memory 820 represents any form of memory, such as
random access memory (RAM), read-only memory (ROM),
flash memory, or a combination of such devices. In use, the
memory 820 can contain, among other things, a set of
machine instructions which, when executed by processor
810, causes the processor 810 to perform operations to imple-
ment embodiments of the present invention.

Also connected to the processor(s) 810 through the inter-
connect 830 is a network interface device 840. The network
interface device 840 provides the system 800 with the ability
to communicate with remote devices, and may be, for
example, an Ethernet adapter or Fiber Channel adapter.

10

15

20

25

30

35

40

45

50

55

60

65

22

The system 800 may also include one or more optional
input devices 852 and/or optional display devices 850. Input
devices 852 may include a keyboard, a mouse or other point-
ing device. The display device 850 may include a cathode ray
tube (CRT), liquid crystal display (LCD), or some other
applicable known or convenient display device.

CONCLUSION

Unless the context clearly requires otherwise, throughout
the description and the claims, the words “comprise,” “com-
prising,” and the like are to be construed in an inclusive sense
(i.e., to say, in the sense of “including, but not limited to0™), as
opposed to an exclusive or exhaustive sense. As used herein,
the terms “connected,” “coupled,” or any variant thereof
means any connection or coupling, either direct or indirect,
between two or more elements. Such a coupling or connec-
tion between the elements can be physical, logical, or a com-
bination thereof. Additionally, the words “herein,” “above,”
“below,” and words of similar import, when used in this
application, refer to this application as a whole and not to any
particular portions of this application. Where the context
permits, words in the above Detailed Description using the
singular or plural number may also include the plural or
singular number respectively. The word “or,” in reference to a
list of two or more items, covers all of the following interpre-
tations of the word: any of'the items in the list, all of the items
in the list, and any combination of the items in the list.

The above Detailed Description of examples of the inven-
tion is not intended to be exhaustive or to limit the invention
to the precise form disclosed above. While specific examples
for the invention are described above for illustrative purposes,
various equivalent modifications are possible within the
scope of the invention, as those skilled in the relevant art will
recognize. While processes or blocks are presented in a given
order in this application, alternative implementations may
perform routines having steps performed in a different order,
or employ systems having blocks in a different order. Some
processes or blocks may be deleted, moved, added, subdi-
vided, combined, and/or modified to provide alternative or
subcombinations. Also, while processes or blocks are at times
shown as being performed in series, these processes or blocks
may instead be performed or implemented in parallel, or may
be performed at different times. Further any specific numbers
noted herein are only examples. It is understood that alterna-
tive implementations may employ differing values or ranges.

The various illustrations and teachings provided herein can
also be applied to systems other than the system described
above. The elements and acts of the various examples
described above can be combined to provide further imple-
mentations of the invention.

Any patents and applications and other references noted
above, including any that may be listed in accompanying
filing papers, are incorporated herein by reference in their
entireties. Aspects of the invention can be modified, if neces-
sary, to employ the systems, functions, and concepts included
in such references to provide further implementations of the
invention.

These and other changes can be made to the invention in
light of the above Detailed Description. While the above
description describes certain examples of the invention, and
describes the best mode contemplated, no matter how
detailed the above appears in text, the invention can be prac-
ticed in many ways. Details of the system may vary consid-
erably inits specific implementation, while still being encom-
passed by the invention disclosed herein. As noted above,
particular terminology used when describing certain features

US 9,277,026 B2

23

or aspects of the invention should not be taken to imply that
the terminology is being redefined herein to be restricted to
any specific characteristics, features, or aspects of the inven-
tion with which that terminology is associated. In general, the
terms used in the following claims should not be construed to
limit the invention to the specific examples disclosed in the
specification, unless the above Detailed Description section
explicitly defines such terms. Accordingly, the actual scope of
the invention encompasses not only the disclosed examples,
but also all equivalent ways of practicing or implementing the
invention under the claims.

While certain aspects of the invention are presented below
in certain claim forms, the applicant contemplates the various
aspects of the invention in any number of claim forms. For
example, while only one aspect of the invention is recited as
a means-plus-function claim under 35 U.S.C. §112, sixth
paragraph, other aspects may likewise be embodied as a
means-plus-function claim, or in other forms, such as being
embodied in a computer-readable medium. (Any claims
intended to be treated under 35 U.S.C. §112, 96 will begin
with the words “means for.”) Accordingly, the applicant
reserves the right to add additional claims after filing the
application to pursue such additional claim forms for other
aspects of the invention.

We claim:
1. A method, comprising:
determining a plurality of working sets, each associated
with one or more cache devices of a networking system;

generating an index based on the plurality of working sets
as a function of a number of shared cache keys across the
plurality of working sets; and

storing the index in a database of the networking system for

assisting content delivery.

2. A method according to claim 1, wherein generating the
index based on the plurality of working sets includes gener-
ating a cluster stickiness index, wherein generating the cluster
stickiness index comprises:

determining a shared percentage for each working set of

the plurality of working sets, the shared percentage
being a percent of each working set that contains a cache
key shared with remaining working sets from the plural-
ity of working sets; and

computing a cluster index value for each working set based

on the shared percentage.

3. A method according to claim 2, wherein each working
set corresponds to a front-end cluster of the networking sys-
tem, wherein the front-end cluster is implemented by the one
or more cache devices, such that each working set contains an
aggregation of unique cached items of the one or more cache
devices.

4. A method according to claim 3, wherein determining the
plurality of working sets includes:

for each working set,

identifying the aggregation of unique cached items
based on individual cache keys of a plurality of
cached items of the one or more caches devices of
each front-end cluster.

5. A method according to claim 1, wherein generating the
index based on the plurality of working sets includes gener-
ating a region stickiness index, wherein generating the region
stickiness index comprises:

determining a shared percentage for each working set of

the plurality of working sets, the shared percentage
being a percent of each working set that contains a cache
key shared with remaining working sets from the plural-
ity of working sets; and

10

15

20

25

30

35

40

45

50

55

60

65

24

computing a region index value for each working set based

on the shared percentage.

6. A method according to claim 5, wherein each working
set corresponds to a data center of the networking system,
wherein the data center is implemented by the one or more
cache devices, such that each working set contains an aggre-
gation of unique cached items of the one or more cache
devices.

7. A method, comprising:

identifying, by a computing device, a plurality of working

sets containing unique cached items of a networking
system,

comparing, by the computing device, the plurality of work-

ing sets to identify one or more shared cache keys across
the plurality of working sets;
for each working set, determining, by a computing device,
a shared percentage based on the one or more shared
cache keys, wherein the one or more shared cache keys
correspond to the unique cached items; and

generating, by a computing device, an index based on the
shared percentage.

8. A method according to claim 7, wherein identifying the
plurality of working sets includes sampling of a plurality of
cache keys corresponding to cached items of the networking
system.

9. A method according to claim 7, wherein generating the
index includes generating a cluster stickiness index, the clus-
ter stickiness index including stickiness values for a plurality
of front-end clusters within a data center associated with the
networking system.

10. A method according to claim 7, wherein generating the
index includes generating a region stickiness index, the
region stickiness index including stickiness values for a plu-
rality of regions within a global set associated with the net-
working system.

11. A system, comprising:

means for determining a plurality of working sets, each

associated with one or more cache devices of a network-
ing system;

means for generating an index based on the plurality of

working sets as a function of a number of shared cache
keys across the plurality of working sets; and

means for storing the index in a database of the networking

system for content delivery.

12. A system according to claim 11, wherein each working
set corresponds to a front-end cluster within a data center
associated with the networking system, wherein the front-end
cluster is implemented by the one or more cache devices, such
that each working set contains an aggregation of unique
cached data items of the one or more cache devices.

13. A system according to claim 12, wherein means for
determining the plurality of working sets includes:

means for identifying the aggregation of unique cached

data items based on individual cache keys of a plurality
of cached data items of the one or more cache devices of
the front-end cluster.

14. A system according to claim 13, wherein means for
generating the index includes:

means for comparing the plurality of working sets to iden-

tify one or more of the shared cache keys across the
plurality of working sets;

means for generating a shared percentage for each working

set based on a result of the comparing; and

means for generating an index value for each working set

based on the shared percentage.

US 9,277,026 B2

25

15. A system according to claim 14, wherein the index
value for each working set corresponds to the front-end clus-
ter within the data center.

16. A system according to claim 14, wherein the index
value for each working set corresponds to the data center
within the global set.

17. A system according to claim 11, wherein each working
set corresponds to a data center within a global set associated
with the networking system, wherein each data center is
implemented by the one or more cache devices, such that each
working set contains an aggregation of unique cached data
items of the one or more cache devices.

18. A system according to claim 17, wherein means for
determining the plurality of working sets includes:

means for identifying the aggregation of unique cached

data items based on individual cache keys of a plurality
of cached data items of the one or more cache devices of
each data center.

19. A system according to claim 17, wherein means for
generating the index includes:

means for comparing the plurality of working sets to iden-

tify one or more of the shared cache keys across the
plurality of working sets;

means for generating a shared percentage for each working

set based on a result of the comparing; and

means for generating an index value for each working set

based on the shared percentage.

20. A system according to claim 11, further comprising
means for routing a user request for accessing a data item
from the one or more cache devices associated with the plu-
rality of working sets based on the index.

#* #* #* #* #*

20

25

26

